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The vibroacoustic coupling between a "nite circular cylindrical shell closed at each end by
a piece of circular plate and its enclosed cavity is analyzed in this paper by using a new
method, called the covering-domain method. The covering-domain method, which
transforms the calculation of the scattering sound "eld of a complicated-shaped close cavity
to that of a series of simply regular-shaped close shells such as close spherical shell and
in"nite cylindrical shell, is applied to calculating the scattering sound "eld of the plate-ended
cylindrical shell structure. So we can predict radiated sound pressure of the composite elastic
structure excited by an external force by using the acoustical reciprocity theorem. The new
method expands practical application of the reciprocity theorem. It is veri"ed to be valid by
a corresponding test. ( 2000 Academic Press
1. INTRODUCTION

The plate-ended cylindrical shell structure is of particular interest for many industrial
applications. The vibroacoustic coupling analysis of the composite elastic structure and the
quantitative prediction of its sound radiation are very important topics in the study on
structural vibration and noise control. Representative examples for this are the designs of
aeronautical or space structures and industrial vessels.

Up to now, the many studies of vibroacoustic characteristics of these shell}plate
structures are mostly limited to the free vibration analysis [1, 2]. Ba"lios et al. had
developed an analytical model to predict the structure-borne noise in a double-wall
cylindrical composite shell in reference [3], in which the motions of the shell and the end
plates are taken to be independent, so the acoustic pressure inside the enclosure can be
obtained by the superposition of the corresponding acoustic radiation pressure due to shell
and plate motions. Tavakoli and Singh [4] had applied the state-space method (SSM),
a transfer-matrix-based sub-structuring technique, to analyze the vibration characteristic of
a hermetic cavity which is composed of a circular cylinder with two circular end plates.
Since the SSM requires distinct boundaries, the eigenproblem becomes singular at the
center of the end plate. A &&pinhole'' with free edges is introduced at the center of the end
plate as the initial boundary, which may produce inaccurate moment and force estimations
near the center of the plate. The state-space method, the receptance method [5] and the
transfer matrix method [6, 7] can be used only to analyze the free vibration of those
composite structures. Once the forced vibration and sound radiation of those combined
structures are considered, these methods will be complex.

On the basis of a free vibration model, and using an arti"cial spring system to consider
the boundary conditions and shell}plate joint conditions, Cheng [8] studied the full
0022-460X/00/450793#11 $35.00/0 ( 2000 Academic Press
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coupling of a plate-ended circular cylindrical shell with its enclosed acoustic medium.
However, it is not easy to establish the corresponding free vibration model for
a complicated structure. Slepyan and Sorokin [9, 10] presented a two-level boundary
integral equation method to analyze forced vibrations of a composite elastic structure
immersed in compressible inviscid #uid. Because both the interaction between the acoustic
medium and the composite structure and the interactions between the parts of the structure
are described by boundary integral equations, it is very complicated to perform
calculations.

Therefore, this paper presents a new method, covering-domain method, to predict the
internal sound radiation from a plate-ended circular cylindrical shell due to the action of an
external force. Reference [11] has given a general expression about Fredholm integration
equation which expresses the strain-stress relation of an arbitrary-shaped elastomer due to
an external force by using a concept of covering domain. The concept is used for reference in
the paper. This method can also be used to deal with more complicated structures.

2. THEORY OF THE COVERING-DOMAIN METHOD

Suppose elastomers A and B are, respectively, "xed in two separate co-ordinate systems.
When the two co-ordinate systems are overlapped, it is concluded that B covers A if point
M3A, then M3B.

In general case, the boundary curved surface C of an arbitrary-shaped closed shell A can
always be "t by n pieces of spherical surfaces C

1
, C

2
,2, C

n
. To calculate the interior sound

"eld of the closed shell A, a series of close spherical shells A
k
(k"1, 2,2, n) can be used to

cover A. The spherical shell A
k
has only a piece of its boundary ¸

k
to coincide with C

k
and

has the same thickness as the original spherical surface C
k
. It is obvious that the common

domain of all of A
k
is the domain occupied by the closed shell.

Although it is di$cult to calculate the interior sound "eld of a closed shell with
complicated shape directly, it is easy to calculate the interior sound "eld of these spherical
shells. So we can make use of the concept of covering domain in order to change the
problem of the interior sound "eld of a complicated shell into a simple problem of a series of
closed spherical shells. Then the interior scattered sound "eld of the arbitrary-shaped closed
shell can be expressed as follows:

P
s
(r)"

n
+
k/1

P (k)
S

(r), (1)

where P (k)
S

(r) is the scattering sound "eld of the kth covering spherical shell at an interior
point r of the arbitrary-shaped closed shell.

For a closed composite structure B, which consists of a "nite cylindrical shell and two
circular end plates, the internal sound "eld of the elastic structure B excited by an external
force is complex. In order to obtain the internal scattered sound "eld of B, we can use an
in"nite cylindrical shell and two close spherical shells with radii big enough to "t the end
plates to cover B. The radius and wall thickness of the in"nite cylindrical shell are the same
as those of the "nite cylindrical shell and the wall thickness of the close spherical shell is the
same as that of the end plate. Thus, the common domain of the in"nite cylindrical shell and
the two spherical shells is the internal domain of the closed composite structure B. So the
internal scattered sound "eld of the composite structure B can be expressed as

P
S
(r)"P

SC
(r)#P

SS1
(r)#P

SS2
(r), (2)
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where P
SC

(r) is the internal scattering sound "eld of the in"nite cylindrical shell and
P
SS1

(r) and P
SS2

(r) are the internal scattering sound "eld of the two spherical shells
respectively.

According to the acoustic reciprocity theorem, to calculate the radiation sound pressure
of an elastomer at a space point r

0
due to the action of an external force, it is supposed that

there is a point sound source q with unit intensity at r
0
. If the scattered sound "eld P

S
(r, r

0
)

by the elastomer at a point r due to the action of the q is known, the radiation sound
pressure of the elastomer at the point r

0
excited by the external force can be calculated by

the following equation:

P(r
0
)"!

1

i4nuo PP
S

)P
S
(r, r

0
)

Ln
) f (r) dS, (3)

where f (r) is the distributive external force acting on the elastomer at r, S the elastic surface,

n the normal of the elastic surface which directs toward outside, i"J!1, u the circular
frequency, o the medium density, P(r

0
) the radiation sound pressure at r

0
, and P

S
(r, r

0
) the

scattering sound "eld of the elastic surface.
Obviously, if the internal scattering sound "elds P

SC
(r), P

SS1
(r) and P

SS2
(r) can be

obtained, the internal radiated sound "eld by the plate-ended cylindrical shell structure
excited by an external force can be obtained by equation (3).

3. CALCULATING THE INTERNAL SCATTERING SOUND FIELD OF THE INFINITE
CYLINDRICAL SHELL

When there is a point sound source with unit intensity at a point r
0

in an in"nite
cylindrical shell, the spherical wave radiated by the point sound source can be decomposed
into the form of cylindrical waves whose axes cross at the point r

0
according to the

following formula [12]:

e*kR1

R
1

"

ik

2 PC

H(1)
0

(kj sin m ) sin m eik Dz!z
0
Dcos m dm, (4)

where j"Jr2#r2
0
!2rr

0
cos (u!u

0
), R

1
"Jj2#z2, k is the wave number, (r

0
, u

0
, z

0
)

are the cylindrical co-ordinates for the point r
0
, (r, u, z) are the cylindrical co-ordinates for

an internal point r, H(1)
0

( ) ) is the "rst kind of Hankel function with zero order, m denotes the
angle between the axes of the cylindrical shell and cylindrical wave, and C is its integral path
shown in Figure 1.

Now we consider an in"nite cylindrical shell with inside radius b and outside radius a,
longitudinal wave speed c

l
and transverse wave speed c

t
. The density of air medium inside

and outside the shell is o and wave speed is c.
An internal cylindrical wave, whose axis forms an angle m with the axis of the cylindrical

shell, can be expressed as follows:

P
0C

(r,u, z)"H(1)
0

(kj sin m) eik Dz!z
0
Dcos m

"eikDz!z
0
Dcos m =

+
m/0

e
m
J
m

(kr
0
sin m)H(1)

m
(kr sin m ) cosm (u!u

0
), (5)



Figure 1. Schematic diagram of integral path C.

796 J. H. WU E¹ A¸.
where k"u/c, e
m

is the Neumann coe$cient, J
m
( )) the Bessel function and H(1)

m
( ) ) the "rst

kind of Hankel function. In the air medium inside the hollow cylindrical shell, the scattered
sound pressure P

S1
can be expressed

P
S1

(r,u, z)"eik Dz!z
0
Dcos m =

+
m/0

e
m
B
m
J
m
(kr sin m ) cosm (u!u

0
), (6)

where B
m

is the unknown scattering coe$cient.
Within the solid shell, the vibrational displacement vector u is given by

u"+W#+]A, (7)

where ( is a scalar potential representing longitudinal waves and A is a vector potential
representing transverse waves. The displacement equations are satis"ed if W and A verify
the di!erential equations

+2W!

1

c2
l

L2W

Lt2
"0, (8)

+ 2A!

1

c2
t

L2A

Lt2
"0. (9)

Then, W and A can be expressed as

W (r, u, z)"eikDz!z
0
Dcos m =

+
m/0

e
m

[C
m1

U
m
(k

l
r sin h

l
)#C

m2
V
m

(k
l
r sin h

l
)] cosm (u!u

0
), (10)

A
r
(r, u, z)"eik Dz!z

0
Dcos m =

+
m/0

e
m

[D
m1

U
m`1

(k
t
r sin h

t
)#D

m2
V
m`1

(k
t
r sin h

t
)] sinm (u!u

0
),

(11)
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Au (r, u, z)"!eik Dz!z
0
Dcos m =

+
m/0

e
m

[D
m1

U
m`1

(k
t
r sin h

t
)#D

m2
V
m`1

(k
t
r sin h

t
)] cosm (u!u

0
),

(12)

A
z
(r, u, z)"eik Dz!z

0
Dcos m =

+
m/0

e
m

[E
m1

U
m
(k

t
r sin h

t
)#E

m2
V
m
(k

t
r sin h

t
)] sinm (u!u

0
),

(13)

where sin h
l
"J1!(c

l
/c)2 cos2 m, sin h

t
"J1!(c

t
/c)2 cos2 m, k

l
"u/c

l
, k

t
"u/c

t
, C

m1
,

C
m2

, D
m1

, D
m2

, E
m1

, and E
m2

are unknown coe$cients.
Depending on the angle of m, sin h

l
and sin h

t
can be real or imaginary, so functions U

m
( ))

and V
m
( ) ) are the "rst (J

m
) and second kind (N

m
) Bessel functions or the modi"ed Bessel

functions of the "rst (I
m
) and second kind (K

m
) (cf. reference [13]).

In the air medium outside the cylindrical shell, transmission sound pressure P
1C

can be
written as follows:

P
1C

(r,u, z)"eik Dz!z
0
Dcos m =

+
m/0

e
m

F
m
H(1)

m
(kr sin m ) cosm(u!u

0
), (14)

where F
m

is the unknown coe$cient.
By applying the boundary conditions of displacements and stresses continuity at the two

surfaces (at r"a and b) of the cylinder, the coe$cients B
m
, C

m1
, C

m2
, D

m1
, D

m2
, E

m1
, E

m2
and

F
m

can be determined by a set of equations. Then B
m

can be obtained by solving the set of
equations.

Therefore, when there is a point sound source with unit intensity at an internal point r
0
in

the in"nite cylindrical shell, the internal scattered sound "eld by the cylindrical shell can be
expressed as

P
SC

(r, u, z)"
uok

8n
=
+

m/0
PC

eik Dz!z
0
Dcos m B

m
J
m
(kr sin m) cosm (u!u

0
) sin mdm. (15)

4. CALCULATING THE INTERNAL SCATTERING SOUND FIELD OF CLOSE
THIN-WALLED ELASTIC SPHERICAL SHELL

Considering a system with spherical co-ordinates (r, h, u), we can make the center of the
co-ordinate system coincide with the center of a close thin-walled elastic spherical shell. It is
supposed that there is a point sound source q with unit intensity at the interior point
r
0
(r
0
, h

0
, u

0
) of the spherical shell. Due to the action of q, the spherical shell will bring about

vibration, generate interior sound "eld P
1S

(r), and external sound "eld P
2S

(r) respectively.
P
1S

(r) consists of two parts, i.e., free sound "eld P
0S

(r) generated by q, and the interior
scattered sound "eld P

SS
(r).

It is easy to get P
0S

(r) as follows:

P
0S

(r, h, u)"!

iuo
4n

e*kR2

R
2

e~*ut

"

=
+
n/0

n
+

m/~n

iuo
4n

(2n#1)k
(n!m)!

(n#m)!
Pm
n
(cos h)Pm

n
(cos h

0
)e*m(u!u

0
) j
n
(kr

0
)h(1)

n
(kr)e~*ut.

(16)
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The external sound "eld and the interior scattered sound "eld, which are related to the
vibration of the spherical shell, can be given as follows:

P
2S

(r, h, u)"
=
+
n/0

n
+

m/~n

B
n
h(1)
n

(kr) Pm
n
(cos h) e*mu e~*ut, (17)

P
SS

(r, h,u)"
=
+
n/0

n
+

m/~n

C
n
j
n
(kr) Pm

n
(cos h) e*mu e~*ut, (18)

where R
2
"Jr2#r2

0
!2r r

0
cosb , b is the angle between vector r and r

0
, B

n
and C

n
are

unknown coe$cients, h(1)
n

( ) ) is the "rst kind of the spherical Hankel function, j
n
( ) ) is the

spherical Bessel function, and Pm
n
( ) ) is the "rst kind of the associated Legendre function.

According to reference [14], the radial displacement w of the spherical shell should meet
the following equation:

e+ 6w#r
1
+ 4w#r

2
+ 2w#r

3
w#="0, (19)
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+ 2,
L2

Lh2
#ctg h

L
Lh

#

1

sin2 h
L2

Lu2
,

where h is the thickness of the spherical shell, R the nominal radius of the closed spherical
shell, E the Young's modulus, k the Poisson ratio of the shell material, and k

s
is an averaging

coe$cient of the shear.
Here suppose

w"

=
+
n/0

n
+

m/~n

A
n
Pm

n
(cos h) e*mu e~*ut . (20)
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Then the following boundary condition should be met on the interfaces of the shell and
acoustic medium:

1

iuo
LP

1S
Lr K

r/R~h@2

"

1

iuo
LP

2S
Lr K

r/R`h@2

"

Lw

Lt
. (21a)

Because the shell wall considered here is thin (h@j
0
, in which j

0
is the wavelength of sound

wave in the material of the shell), the medium vibration velocity on the interior and external
surface of the shell (r"R$h/2) can be replaced by the vibration velocity on the middle
surface of the shell r"R. In this case, the boundary conditions may be written as

1

iuo
LP

1s
Lr K

r/R

"

1

iuo
LP

2S
Lr K

r/R

"

Lw

Lt
. (21b)

Then the following results can be obtained by equations (19)} (21b):

C
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a
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n
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0
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0
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a
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n
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a
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n
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n
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a
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b
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"
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r
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Therefore, if there is a point sound source with unit intensity in the closed thin spherical
shell, its interior scattered sound "eld can be obtained by equation (18).

Obviously, P
SS1

(r) and P
SS2

(r) in equation (2) can be obtained by equation (18), which only
need di!erent parameters.

5. EXPERIMENTS

To verify the method presented in this paper, we measured the internal radiated sound
pressure by the combined cylindrical shell structure as shown in Figure 2. The combined
structure consists of a "nite cylindrical shell and two end plates, which are jointed by bolts.
In the experiment, the structure is suspended by soft ropes at its ends. There is a pore at the
center of each end plate, through which a horizontal regulating stem for measuring can be
moved. The origin of the cylindrical co-ordinate system (r, u, z) is located at the center of the



Figure 2. Experimental model of the composite cylindrical shell structure (unit: mm).

Figure 3. Sketch of essential testing system for the combined structure with cylindrical shell: 1. Rubbing sling;
2. Generator (B&K4809); 3. Force sensor (B&K8001); 4. Combined cylindrical shell structure (cross section); 5.
Microphone (B&K4155).
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left end plate, and the z-axis is equal to the axis of the "nite cylindrical shell in the direction
of the right.

In order to reduce the environmental in#uence, all the experiments are done in an
anechoic room. As shown in Figure 3, the essential testing system consists of two parts, i.e.,
excitation part and corresponding testing part. The signal analyzer B&K2035 is used in all
the experiments.

To measure the inside sound pressure of the combined structure, we design an adjustable
measuring device, which consists of longitudinal regulating stem, radial measuring rod and
microphone. The measuring rod, whose radial size is adjustable, can be moved along the
longitudinal regulating stem. The microphone is installed on the radial measuring rod. The
position of the microphone can be read by a scale and regulated by the corresponding
movement and rotation.
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The generator is suspended by rubber slings and the excitation point is located at the
point (110, 3n/2, 120) (by the millimeter, the same as the following). When the harmonic
exciting forces with corresponding frequencies of 800, 900, 1000 and 1100 Hz are used,
respectively, we can measure the sound pressure at di!erent internal points which are taken
as 1, 2,2 , 10 whose co-ordinates are shown in Table 1. The amplitudes of the forces are all
3N. The corresponding theoretical calculations are conducted by using the
covering-domain method above. The comparisons between measured results and computed
results are shown in Figure 4 in which the horizontal co-ordinate denotes the order of
measured points and the vertical co-ordinate denotes the sound pressure amplitude. It can
be seen that there is a good agreement between them at 800 and 1000 Hz. But there is a little
discrepancy at several points at 900 and 1100 Hz, which may be caused by di!erence
Figure 4. Comparison between measuring results and calculating results: **, calculating results; } } },
measuring results.

TABLE 1

¹he cylindrical co-ordinates of the measured points

Order of
measured points

1 2 3 4 5

Co-ordinates of
measured points

(110, 3n/2, 700) (110, n/2, 700) (110, 3n/2, 600) (110, n/2, 600) (110, 3n/2, 500)

Order of
measured points

6 7 8 9 10

Co-ordinates of
measured points

(110, n/2, 500) (110, 3n/2, 400) (110, n/2, 400) (110, 3n/2, 300) (110, n/2, 300)
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between theoretic model and experimental model, and by random measuring error in
practice. As a whole, there is a credible agreement between them. So the method presented
in this paper is veri"ed to be valid.

6. CONCLUSIONS

This paper introduces the covering-domain method to predict the internal sound
radiation from a plate-ended circular cylindrical shell due to the action of an external force.
The formulas for calculating the internal scattering sound "elds of an in"nite cylindrical
shell and a closed thin-walled spherical shell is given in this paper. In addition, although we
calculate only the internal sound "eld of the composite elastic structure, by using the
method presented above, the external radiation sound "eld of the composite elastic
structure or other complicated structures excited by arbitrary force can also be calculated.
This will largely expand practical applications of the acoustic reciprocity theorem.
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APPENDIX: NOMENCLATURE

u circular frequency
o density of the acoustic medium
b, a inside radius and outside radius of the "nite cylindrical shell
c
l

longitudinal wave speed
c
t

transverse wave speed
c speed of sound in the acoustic medium
k wave number corresponding to c
P
SC

internal scattering sound "eld of the in"nite cylindrical shell
P
SS1

, P
SS2

internal scattering sound "eld of the two spherical shells
P
S

internal scattering sound "eld of the combined cylindrical shell structure
f (r) distributive external force acting on an elastomer at r
S boundary of the acoustic medium
n outward normal to the #uid domain at the surface of an elastomer
P(r

0
) radiation sound pressure at r

0
i "J!1
P
0C

an internal cylindrical wave
P
S1

scattered sound pressure of P
0C

inside the cylindrical shell
e
m

Neumann coe$cient
u vibrational displacement vector
W scalar potential representing longitudinal waves
A vector potential representing transverse waves
A

r
, Au, A

z
component of A in cylindrical co-ordinates

k
l
, k

t
wave number corresponding to c

l
, c

t
respectively

P
1C

transmission sound pressure of P
0C

outside the cylindrical shell
q point sound source
P
0S

free sound "eld generated by q
P
SS

internal scattering sound "eld of the spherical shell generated by q
P
1S

, P
2S

interior sound "eld and external sound "eld of the spherical shell generated by q,
respectively

h thickness of the spherical shell
R nominal radius of the closed spherical shell
E Young's modulus
k the Poisson ratio of the shell material
k
s

an averaging coe$cient of the shear
w radial displacement of the spherical shell
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